Affiliation:
1. Chaitanya Bharathi Institute of Technology Osmania University Hyderabad India
Abstract
AbstractThis research paper delves into the security concerns within Internet of Things (IoT) networks, emphasizing the need to safeguard the extensive data generated by interconnected physical devices. The presence of anomalies and faults in the sensors and devices deployed within IoT networks can significantly impact the functionality and outcomes of IoT systems. The primary focus of this study is the identification of anomalies in IoT devices arising sensor tampering, with an emphasis on the application of machine learning techniques. While supervised methods like one‐class SVM, Gaussian Naive Bayes, and XG Boost have proven effective in anomaly detection, there has been a noticeable scarcity of research employing unsupervised methods. This scarcity is mainly attributed to the absence of well‐defined ground truths for model training. This research takes an innovative approach by investigating the utility of unsupervised algorithms, including Isolation Forest and Local Outlier Factor, alongside supervised techniques to enhance the precision of anomaly detection.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献