Density estimation via measure transport: Outlook for applications in the biological sciences

Author:

López‐Marrero Vanessa12ORCID,Johnstone Patrick R.13,Park Gilchan1,Luo Xihaier1

Affiliation:

1. Computational Science Initiative Brookhaven National Laboratory Upton New York USA

2. Institute for Advanced Computational Science (IACS) Stony Brook University Stony Brook New York USA

3. Meta New York USA

Abstract

AbstractOne among several advantages of measure transport methods is that they allow or a unified framework for processing and analysis of data distributed according to a wide class of probability measures. Within this context, we present results from computational studies aimed at assessing the potential of measure transport techniques, specifically, the use of triangular transport maps, as part of a workflow intended to support research in the biological sciences. Scenarios characterized by the availability of limited amount of sample data, which are common in domains such as radiation biology, are of particular interest. We find that when estimating a distribution density function given limited amount of sample data, adaptive transport maps are advantageous. In particular, statistics gathered from computing series of adaptive transport maps, trained on a series of randomly chosen subsets of the set of available data samples, leads to uncovering information hidden in the data. As a result, in the radiation biology application considered here, this approach provides a tool for generating hypotheses about gene relationships and their dynamics under radiation exposure.

Funder

U.S. Department of Energy

Publisher

Wiley

Reference46 articles.

1. Clustering and Classification through Normalizing Flows in Feature Space

2. R.BaptistaandP.‐B.Rubio.AdaptiveTransportMaps software library.2022https://github.com/baptistar/ATM.

3. Triangular transformations of measures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3