Optimized deep learning‐based channel estimation for pilot contamination in a massive multiple‐input‐multiple‐output‐non‐orthogonal multiple access system

Author:

S. Deepa1ORCID,Singh Charanjeet2ORCID,P. N. Renjith3ORCID

Affiliation:

1. Department of Electronics and Communication Engineering Panimalar Engineering College Chennai India

2. Electronics and Communication Department Deenbandhu Chhotu Ram University of Science and Technology Sonipat India

3. School of Computer Science and Engineering Vellore Institute of Technology, Chennai Campus Chennai India

Abstract

SummaryOne of the advanced field in 5G cellular networks is the Massive Multiple‐Input‐Multiple‐Output (MIMO), which creates a massive antenna array by offering numerous antennas at the destination. This grows as a hot research topic in the wireless sectors as it enhances the volume and spectrum usage of the channel. The spectral efficiency (SE) is maximized using the abundant antennas employed by MIMO using spatial multiplexing of consumers, which needs precise channel state information (CSI). The SE is affected by both pilot overhead and pilot contamination. To mitigate the contamination and to estimate the suitable channel for communication, an efficient strategy is introduced using the proposed Namib Beetle Aquila optimization (NBAO)_Deep Q network (DQN). Here, the optimal pilot location is identified by employing NBAO, which is an integration of Namib beetle optimization (NBO) and Aquila optimizer (AO). Moreover, DQN is introduced to determine the suitable channel and metrics, such as bit error rate (BER) and normalized mean square error (MSE) is used for evaluation. The normalized MSE channel estimation is utilized to mitigate the effects of pilot contamination. Additionally, designed NBAO + DQN have attained a value of 0.0006 and 0.0005 for BER and normalized MSE.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3