Self‐triggered adaptive neural control for USVs with sensor measurement sensitivity under deception attacks

Author:

Wu Chen1ORCID,Zhu Guibing1ORCID,Liu Yongchao2,Li Feng3

Affiliation:

1. School of Naval Architecture and Maritime Zhejiang Ocean University Zhoushan Zhejiang China

2. School of Automation Qingdao University Qingdao Shandong China

3. Shanghai AIDS To Navigation Department Donghai Navigation Safety Administration Shanghai China

Abstract

AbstractThis article investigates the control problem of unmanned surface vessels with sensor measurement sensitivity under deception attacks, and proposes a novel self‐triggered adaptive neural control scheme under the backstepping design framework. To solve the control design problem of unknown time‐varying gains caused by deception attacks and measurement sensitivity in kinematic and kinetic channels, the parameter adaptive and neural network technology are involved. In addition, to decrease actuator wear caused by the high‐frequency wave and sensor measurement sensitivity and reduce the computational burden caused by continuous monitoring of the triggered condition, a self‐triggered mechanism is constructed in the controller–actuator channel. Finally, a self‐triggered adaptive neural control solution is proposed, which can guarantee that all signals in the whole closed‐loop system are bounded by theoretical analysis. The effectiveness and superiority are verified by numerical simulations.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3