Identification of sinkhole‐prone zones by successive coincidence deficit index analysis

Author:

Şahin A. Ufuk1ORCID,Ozkaya Arzu2ORCID

Affiliation:

1. Department of Civil Engineering Hacettepe University Ankara Turkey

2. Department of Civil Engineering Ankara Yildirim Beyazit University Ankara Turkey

Abstract

AbstractHydrological data‐driven models require the time series of several hydrological events with different time resolutions. The interpretation of any time series event is generally difficult without some sort of filtering or converting it to a single index value. The simultaneous analysis of two or more hydrological events over a definite time span may be more informative about the region of interest. For this purpose, a new index, referred to as the successive coincidence deficit index (SCDI), was introduced to identify sinkhole‐prone regions using the persistent water deficit concept. In this study, monthly integrated multi‐satellite retrievals for GPM based precipitation (P) and gravity recovery and climate experiment‐based groundwater storage (GWS) datasets over Konya Closed Basin (KCB) in Türkiye were used to analyse the sinkhole occurrence. The main finding of this study is that SCDI distribution with high index values, concentrated on the southwestern part of KCB, is in line with the sinkholes occurred mainly after 2010. The proposed SCDI could also serve as a kind of drought index, which enables practitioners to quantify the relationship between drought and sinkhole occurrence. Moreover, the event coincidence analysis was utilized to detect deficiency in GWS over the KCB, which was associated with a rate of 0.8 for P deficiency, and this rate reaches up to 0.9 in the sinkhole region analysed in this study. As a conclusion, the proposed methodology can detect sinkhole‐prone regions to construct risk maps for stakeholders, policymakers, and end users.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3