Affiliation:
1. Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
2. Molecular Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
Abstract
Abstract
Understanding the intrinsic and extrinsic signals that regulate the molecular basis of the pluripotent state may improve our understanding of mammalian embryogenesis, different states of pluripotency, and our ability to tailor lineage differentiation. Although the role of the PI3K/Akt pathway in the self-renewal and maintenance of mESCs is well-established, the specific contribution of the pathway or of its negative regulator, PTEN, in the maintenance of the human pluripotent state is less understood. To explore the PI3K/AKT pathway in human embryonic stem cell (hESC) pluripotency and differentiation, we generated stable PTEN knockdown (KD) hESCs using short hairpin RNA. Similar to mESCs, we found that PTEN KD hESCs have increased self-renewal, cell survival, and proliferation over multiple passages compared to control cells. However, in contrast to mESCs, in vitro, PTEN KD hESCs differentiated inefficiently in directed differentiation assays, in part due to the continued maintenance of OCT4 and NANOG expression. In teratoma assays, PTEN KD hESCs generated tissues from the three germ layers, although with a bias toward neuroectoderm differentiation. These results demonstrate that PTEN is a key regulator of hESC growth and differentiation, and manipulation of this pathway may improve our ability to regulate and understand the pluripotent state.
Funder
UCLA Jonsson Comprehensive Cancer Center
The Eli & Edythe Broad Center of Regenerative Medicine
Stem Cell Research at UCLA and the University of California Cancer Research Coordinating Committee
UCLA Tumor Immunology Training Grant Fellowship
University of California Regents President's Postdoctoral Fellowship
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Developmental Biology,Molecular Medicine
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献