Design and partial validation of novel eDNA qPCR assays for three common North American tick (Arachnida: Ixodida) species

Author:

Iacaruso Nicholas12ORCID,Kopsco Heather3ORCID,Gronemeyer Peg13,Merkelz Sara14,Smith Rebecca3ORCID,Davis Mark12ORCID

Affiliation:

1. Illinois Natural History Survey, Prairie Research Institute University of Illinois Urbana‐Champaign Champaign Illinois USA

2. Department of Natural Resources and Environmental Sciences University of Illinois Urbana‐Champaign Urbana Illinois USA

3. Department of Pathobiology University of Illinois Urbana‐Champaign Urbana Illinois USA

4. Department of Integrative Biology University of Illinois Urbana‐Champaign Urbana Illinois USA

Abstract

AbstractThe range expansion of ticks to higher latitudes poses a severe threat to human health exposing human populations who had no prior contact with ticks to several harmful tick‐borne diseases. Early detection of ticks in new areas is critical to help inform the public and medical professionals of the dangers associated with tick encounters. Environmental DNA represents a novel survey method that could provide reliable records of tick occurrences and timely warnings of their range expansions. In this study, we designed novel eDNA qPCR assays for three common North American tick species (Dermacentor variabilis, Amblyomma americanum, and Ixodes scapularis) and tested them on 51 samples of grasses and leaf litter collected from 12 grassland and forest sites in central and southern Illinois. We provide in silico and in vitro validation of all three assays; however, we were unable to generate any positive detections from field samples. Our lack of eDNA detections likely stems from low eDNA deposition rates coupled with rapid degradation in grasslands and forests, a problem exacerbated by terrestrial eDNA sampling methods limited by volume of substrate. We provide recommendations for improving sample collection methods to increase detection probability in future efforts. Continued research should focus on the viability of eDNA to detect small terrestrial invertebrates, like ticks, and it potential as early warning indicator of the spread of vector‐borne diseases.

Funder

U.S. Department of Defense

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3