A warehouse location‐allocation bilevel problem that considers inventory policies

Author:

Camacho‐Vallejo José‐Fernando1,Dávila Dámaris2,Cárdenas‐Barrón Leopoldo Eduardo1

Affiliation:

1. Tecnologico de Monterrey Escuela de Ingeniería y Ciencias Monterrey Mexico

2. Faculty of Engineering and Applied Sciences Universidad de los Andes Santiago Chile

Abstract

AbstractA location‐allocation problem faced by a company that aims to locate warehouses to supply products to a set of customers is addressed in this paper. The company's objective is to minimize the total cost of locating the warehouses and the cost due to inventory policies. However, these inventory decisions are made by a different decision‐maker. In other words, once the company makes the location decisions, the decision‐maker associated with each warehouse must determine its own order quantity. Warehouses are allowed to have a certain maximum number of backorders, which represents an extra cost for them. This situation can be modeled as a bilevel programming problem, where the upper level is associated with the company that needs to minimize the costs related to location‐allocation and the total orders of each warehouse. Each warehouse is associated with an independent lower level, in which a warehouse manager aims to minimize the total inventory cost. The bilevel problem results in a single‐objective upper‐level problem with non‐linear, multiple independent lower‐level problems, making it generally challenging to find an optimal solution. A population‐based metaheuristic under the Brain Storm Optimization algorithm scheme is proposed. To solve each non‐linear problem associated with the lower level, the Lagrangian method is applied. Both decision levels are solved in a nested manner, leading to obtaining bilevel feasible solutions. To validate the effectiveness of the proposed algorithm, an enumerative algorithm is implemented. A set of benchmark instances has been considered to conduct computational experiments. Results show that optimality is achieved by the proposed algorithm for small‐sized instances. In the case of larger‐sized instances, the proposed algorithm demonstrates the same efficiency and consistent results. Finally, interesting managerial insights deduced from the computational experimentation and some proposals for future research directions are included.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3