Critical test of the assumption that the hypothalamic entopeduncular nucleus of rodents is homologous with the primate internal pallidum

Author:

Puelles Luis1ORCID,Stühmer Thorsten2,Rubenstein John L. R.2,Diaz Carmen3ORCID

Affiliation:

1. Department of Human Anatomy and Psychobiology and IMIB‐Arrixaca Institute University of Murcia Murcia Spain

2. Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry UCSF Medical School San Francisco California USA

3. School of Medicine and Institute for Research in Neurological Disabilities University of Castilla–La Mancha Albacete Spain

Abstract

AbstractThe globus pallidus (GP) of primates is divided conventionally into distinct internal and external parts. The literature repeats since 1930 the opinion that the homolog of the primate internal pallidum in rodents is the hypothalamic entopeduncular nucleus (embedded within fiber tracts of the cerebral peduncle). To test this idea, we explored its historic fundaments, checked the development and genoarchitecture of mouse entopeduncular and pallidal neurons, and examined relevant comparative connectivity data. We found that the extratelencephalic mouse entopeduncular structure consists of four different components arrayed along a dorsoventral sequence in the alar hypothalamus. The ventral entopeduncular nucleus (EPV), with GABAergic neurons expressing Dlx5&6 and Nkx2‐1, lies within the hypothalamic peduncular subparaventricular area. Three other formations—the dorsal entopeduncular nucleus (EPD), the prereticular entopeduncular nucleus (EPPRt), and the preeminential entopeduncular nucleus (EPPEm)—lie within the overlying paraventricular area, under the subpallium. EPD contains glutamatergic neurons expressing Tbr1, Otp, and Pax6. The EPPRt has GABAergic cells expressing Isl1 and Meis2, whereas the EPPEm population expresses Foxg1 and may be glutamatergic. Genoarchitectonic observations on relevant areas of the mouse pallidal/diagonal subpallium suggest that the GP of rodents is constituted as in primates by two adjacent but molecularly and hodologically differentiable telencephalic portions (both expressing Foxg1). These and other reported data oppose the notion that the rodent extratelencephalic entopeduncular nucleus is homologous to the primate internal pallidum. We suggest instead that all mammals, including rodents, have dual subpallial GP components, whereas primates probably also have a comparable set of hypothalamic entopeduncular nuclei. Remarkably, there is close similarity in some gene expression properties of the telencephalic internal GP and the hypothalamic EPV. This apparently underlies their notable functional analogy, sharing GABAergic neurons and thalamopetal connectivity.

Funder

National Institute of Neurological Disorders and Stroke

National Institute of Mental Health

Publisher

Wiley

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3