Halide‐based solid electrolytes: The history, progress, and challenges

Author:

Nie Xianhui123,Hu Jiulin123ORCID,Li Chilin123ORCID

Affiliation:

1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China

3. CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China

Abstract

AbstractLithium metal solid‐state batteries (LMSBs) have attracted extensive attention over the past decades, due to their fascinating advantages of safety and potential for high energy density. Solid‐state electrolytes (SEs) with fast ionic transport and excellent stability are indispensable components in LMSBs. Heretofore, a series of inorganic SEs have been extensively explored, such as sulfide‐ and oxide‐based electrolytes. Unfortunately, they both have difficulty in achieving a satisfactory balance of conductivity and stability, and oxides suffer from a high impedance of grain boundaries, while sulfides encounter poor stability. Halide‐based solid electrolytes are gradually emerging as one of the most promising candidates for LMSBs due to their advantages of decent room temperature ionic conductivity (>10−3 S cm−1), good compatibility with oxide cathode materials, good chemical stability, and scalability. Herein, research and development of the widely studied metal halide SEs including fluorides, chlorides, bromides, and iodides are reviewed, mainly focusing on the structures and ionic conductivities as well as preparation methods and electrochemical/chemical stabilities. And then, based on typical metal halide solid electrolytes, we emphasize the interface issues (grain boundaries, cathode−electrolyte and electrolyte–anode interfaces) that exist in the corresponding LMSBs and summarize the related work on understanding and engineering these interfaces. Furthermore, the typical (or in situ) characterization tools widely used for solid‐state interfaces are reviewed. Finally, a perspective on the future direction for developing high‐performance LMSBs based on the halide electrolyte family is put out.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3