Amorphous lithiophilic cobalt‐boride@rGO interlayer for dendrite‐free and highly stable lithium metal batteries

Author:

Wu Yu1,Ma Fei1,Zhang Ziheng1,Chen Daiqian1,Yu Hesheng1,Zhang Xiaojuan2,Ding Fei3,Zhang Lin3,Chen Yuanfu1ORCID

Affiliation:

1. School of Integrated Circuit Science and Engineering State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu China

2. Department of Field Medical Equipment Daping Hospital Army Medical University Chongqing China

3. Institute of Solid State Physics Leibniz University Hannover Hannover Germany

Abstract

AbstractLithium metal batteries (LMBs) are recognized to be crucial for secondary battery technology targeting electric vehicles and portable electronic devices. However, the undesirable growth of lithium dendrites would result in reduced capacity, short‐circuit, and overheating, seriously hindering the practical applications of LMBs. To address this issue, a neoteric lithiophilic interlayer on a commercial polypropylene separator is presented for the first time, which is constructed by amorphous CoB nanoparticles decorated reduced graphene oxide nanosheets (CoB@rGO). Density Functional Theory calculations and experimental analysis reveal remarkable lithiophilicity features for CoB@rGO and provide multiple Li deposition sites and improved electrolyte wettability, which facilitates the formation of durable solid electrolyte interphase (SEI), reduces side reactions, and improves Li+ flux regulation for long‐term cycling stability in LMBs. Taking advantage of these merits, the symmetric Li//Li cell with CoB@rGO/PP separator exhibits stable cycling for up to 1600 h at 1 mA cm−2 with 1 mAh cm−2. Employed with CoB@rGO separator, the Li//LiFePO4 full cell with a high LiFePO4 loading of 11 mg cm−2 delivers a high initial specific capacity of 115.3 mAh g−1 and a low decay rate of 0.08% per cycle after 200 cycles even at a high rate of 2C.

Funder

National Natural Science Foundation of China

Songshan Lake Materials Laboratory

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3