Alterations of apparent diffusion coefficient from ultra high b‐values in the bilateral thalamus and striatum in MRI‐negative drug‐resistant epilepsy

Author:

Tang Guixian1ORCID,Zhou Hailing2,Zeng Chunyuan1,Jiang Yuanfang1,Li Ying1,Hou Lu1,Liao Kai1ORCID,Tan Zhiqiang1,Wu Huanhua1ORCID,Tang Yongjin1,Cheng Yong1,Ling Xueying1,Guo Qiang3,Xu Hao1ORCID

Affiliation:

1. Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET Radiopharmaceuticals The First Affiliated Hospital of Jinan University Guangzhou China

2. Department of Radiology Central People's Hospital of Zhanjiang Zhanjiang China

3. Epilepsy Center, Guangdong 999 Brain Hospital Affiliated Brain Hospital of Jinan University Guangzhou China

Abstract

AbstractObjectiveSubcortical nuclei such as the thalamus and striatum have been shown to be related to seizure modulation and termination, especially in drug‐resistant epilepsy. Enhance diffusion‐weighted imaging (eDWI) technique and tri‐component model have been used in previous studies to calculate apparent diffusion coefficient from ultra high b‐values (ADCuh). This study aimed to explore the alterations of ADCuh in the bilateral thalamus and striatum in MRI‐negative drug‐resistant epilepsy.MethodsTwenty‐nine patients with MRI‐negative drug‐resistant epilepsy and 18 healthy controls underwent eDWI scan with 15 b‐values (0–5000 s/mm2). The eDWI parameters including standard ADC (ADCst), pure water diffusion (D), and ADCuh were calculated from the 15 b‐values. Regions‐of‐interest (ROIs) analyses were conducted in the bilateral thalamus, caudate nucleus, putamen, and globus pallidus. ADCst, D, and ADCuh values were compared between the MRI‐negative drug‐resistant epilepsy patients and controls using multivariate generalized linear models. Inter‐rater reliability was assessed using the intra‐class correlation coefficient (ICC) and Bland–Altman (BA) analysis. False discovery rate (FDR) method was applied for multiple comparisons correction.ResultsADCuh values in the bilateral thalamus, caudate nucleus, putamen, and globus pallidus in MRI‐negative drug‐resistant epilepsy were significantly higher than those in the healthy control subjects (all p < 0.05, FDR corrected).SignificanceThe alterations of the ADCuh values in the bilateral thalamus and striatum in MRI‐negative drug‐resistant epilepsy might reflect abnormal membrane water permeability in MRI‐negative drug‐resistant epilepsy. ADCuh might be a sensitive measurement for evaluating subcortical nuclei‐related brain damage in epilepsy patients.Plain Language SummaryThis study aimed to explore the alterations of apparent diffusion coefficient calculated from ultra high b‐values (ADCuh) in the subcortical nuclei such as the bilateral thalamus and striatum in MRI‐negative drug‐resistant epilepsy. The bilateral thalamus and striatum showed higher ADCuh in epilepsy patients than healthy controls. These findings may add new evidences of subcortical nuclei abnormalities related to water and ion hemostasis in epilepsy patients, which might help to elucidate the underlying epileptic neuropathophysiological mechanisms and facilitate the exploration of therapeutic targets.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3