Pituitary Control of Proliferation and Differentiation of Leydig Cells and Their Putative Precursors in Immature Hypophysectomized Rat Testis

Author:

DOMBROWICZ D.,SENTE B.,REITER E.,CLOSSET J.,HENNEN G.

Abstract

ABSTRACT: The objective of this study was to determine the effects of pituitary hormones (luteinizing hormone [LH], follicle‐stimulating hormone [FSH], growth hormone [GH], and prolactin [PRL]) on interstitial cell proliferation and differentiation in the testis of immature hypophysectomized rats. Macrophages, Leydig cells, precursor mesenchymal cells, endothelial lymphatic cells, and myoid cells were studied. Our experimental approach was aimed at determining whether changes in a cellular subpopulation observed after pituitary hormone treatments were the result of division of existing cells in the population, of differentiation of interstitial precursor cells, or both. In this context, it must be stressed that our data reflected the effects of hormones to prevent the decline of cells due to hypophysectomy rather than their recovery. Macrophage proliferation was taken into account because macrophages closely resemble Leydig cells and are known to proliferate after hormonal treatment. A double‐labeling procedure (acid phosphatase and anti‐bromo‐deoxyuridine [anti‐BUdR]) revealed that LH, FSH, and PRL increased the number of testicular macrophages 105‐, 104‐, and 103‐fold, respectively, in hypophysectomized rats compared to hypophy‐sectomized control animals. BUdR incorporation in testicular macrophages was greater after PRL treatment than after LH and FSH supplementation. In contrast, we were unable to demonstrate any effect of rat GH on the macrophage population. Light microscopic analysis of plastic embedded sections of treated rat testis revealed that LH increased the numbers of Leydig, precursor mesenchymal, and myoid cells 6‐, 4‐, and 1.3‐fold, respectively. LH also stimulated BUdR incorporation into all interstitial cell types. PRL administration increased both the number of Leydig and precursor mesenchymal cells (each 3‐fold) but decreased the number of endothelial lymphatic cells (1.5‐fold) when compared to the control animals. In contrast, FSH did not increase the number and proliferation of Leydig cells but exerted a slight proliferative effect on the other interstitial cell populations. In GH‐treated rats, the number of precursor mesenchymal cells increased two fold above the control rats. GH also exerted slight proliferative effects on both precursor mesenchymal and myoid cells. Immunohistochemical studies of steroidogenic enzymes in the testicular interstitium of treated rats demonstrated the presence of steroidogenic enzymes, not only in Leydig and precursor mesenchymal cells, but also in some (1%‐2%) endothelial lymphatic cells and myoid cells. This may indicate that both of these cell types are also constitutively equipped to perform steroidogenesis or that they are precursor cells undergoing differentiation. Taken together, changes in the number of Leydig cells in our animal model appeared more likely to be dependent on the transformation of pre‐cursor cells than on division of preexisting mature Leydig cells.

Publisher

Wiley

Subject

Urology,Endocrinology,Reproductive Medicine,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3