Temporal Relationships Among Testosterone Production, Steroidogenic Acute Regulatory Protein (StAR), and P450 Side‐Chain Cleavage Enzyme (P450scc) During Leydig Cell Aging

Author:

Luo Lindi,Chen Haolin,Zirkin Barry R.

Abstract

ABSTRACT: Previous studies have shown that the capacity of Leydig cells from aged (21‐24‐month‐old) Brown Norway rats to produce testosterone is reduced from young (4‐month‐old) levels, and that this is correlated with reductions in steroidogenic acute regulatory protein (StAR), peripheral benzodiazapine receptor (PBR), and the levels and activities of the steroidogenic enzymes. The age(s) at which particular changes in the steroidogenic pathway occur, and the relationship of particular changes to reduced testosterone production, are not known. We examined 3 critical components of the steroidogenic pathway, cyclic adenosine monophosphate (cAMP) production, StAR, and P450 side‐chain cleavage enzyme (P450scc) in relationship to age‐related decreases in testosterone production. Leydig cells isolated from Brown Norway rats of increasing ages (4, 9, 15, and 20 months) were evaluated. The ability of Leydig cells to produce testosterone was reduced at 9 months, although not significantly. Significant reductions in testosterone production were first seen in cells isolated from rats of 15 months of age, and further reductions occurred thereafter. Reduced testosterone was correlated with reductions in StAR, P450scc mRNA, and protein. Significant decline in luteinizing hormone‐stimulated intracellular cAMP levels was seen by 9 months, before significant reductions in testosterone, StAR, and P450scc. Further declines in cAMP levels were seen at 15 and 20 months. These studies suggest that age‐related reductions in intracellular cAMP may lead to the reduced testosterone production that characterizes aged Leydig cells. This suggestion is supported by recent studies from our lab demonstrating that long‐term (3 days) culture of old Leydig cells with dbcAMP restored testosterone production to levels approximating those of young cells.

Publisher

Wiley

Subject

Urology,Endocrinology,Reproductive Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3