Simulation of fluid‐structure interaction using the boundary data immersion method with adaptive mesh refinement

Author:

Wang Yuan1ORCID,Ge Wei12

Affiliation:

1. State Key Laboratory of Mesoscience and Engineering Institute of Process Engineering (IPE), Chinese Academy of Sciences (CAS) Beijing China

2. School of Chemical Engineering University of Chinese Academy of Sciences Beijing China

Abstract

SummaryThe fluid‐structure interaction is simulated using the boundary data immersion method. As the fluid‐structure interface is smeared in the smoothing region, deviations are incurred in fluid simulations. For compressible flow, high order difference schemes with more mesh cells for the stencils are usually employed to achieve high overall accuracy, but near interfaces it requires wider smoothing region of several mesh cells for computational stability and hence lowers its accuracy significantly. To address this issue, the proposed algorithm switches to lower order difference schemes near the interfaces and applies adaptive mesh refining there to compensate the accuracy loss. Implemented with Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI), the algorithm shows notable improvement in the overall accuracy and efficiency in cases such as channel flow and flow past a cylinder. The algorithm is used to simulate the shock wave past a fixed or free cylinder with Ma and Re , which reveals the relaxation process and the temporal evolution of the drag coefficient, it goes through a valley and maintains at relatively high value for the fixed cylinder, while that of the free cylinder tends to decrease in fluctuation which is found to be caused by the interaction between the forward moving cylinder and vortexes in the unsteady wake.

Funder

National Science and Technology Major Project

Science Challenge Project

National Key Research and Development Program of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3