Computing rank‐revealing factorizations of matrices stored out‐of‐core

Author:

Heavner N.1,Martinsson P. G.2ORCID,Quintana‐Ortí G.3ORCID

Affiliation:

1. Department of Applied Mathematics University of Colorado at Boulder Boulder Colorado USA

2. Department of Mathematics University of Texas at Austin Austin Texas USA

3. Departamento de Ingeniería y Ciencia de Computadores Universitat Jaume I Castellón Spain

Abstract

SummaryThis paper describes efficient algorithms for computing rank‐revealing factorizations of matrices that are too large to fit in main memory (RAM), and must instead be stored on slow external memory devices such as disks (out‐of‐core or out‐of‐memory). Traditional algorithms for computing rank‐revealing factorizations (such as the column pivoted QR factorization and the singular value decomposition) are very communication intensive as they require many vector‐vector and matrix‐vector operations, which become prohibitively expensive when data is not in RAM. Randomization allows to reformulate new methods so that large contiguous blocks of the matrix are processed in bulk. The paper describes two distinct methods. The first is a blocked version of column pivoted Householder QR, organized as a “left‐looking” method to minimize the number of the expensive write operations. The second method results employs a UTV factorization. It is organized as an algorithm‐by‐blocks to overlap computations and I/O operations. As it incorporates power iterations, it is much better at revealing the numerical rank. Numerical experiments on several computers demonstrate that the new algorithms are almost as fast when processing data stored on slow memory devices as traditional algorithms are for data stored in RAM.

Funder

National Science Foundation of Sri Lanka

Office of Naval Research

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3