Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency

Author:

Son Mi-Young12,Choi Hoonsung1,Han Yong-Mahn2,Sook Cho Yee1

Affiliation:

1. Stem Cell Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea

2. Department of Biological Sciences Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea

Abstract

Abstract Reduced expression 1 (REX1) is a widely used pluripotency marker, but little is known about its roles in pluripotency. Here, we show that REX1 is functionally important in the reacquisition and maintenance of pluripotency. REX1-depleted human pluripotent stem cells (hPSCs) lose their self-renewal capacity and full differentiation potential, especially their mesoderm lineage potential. Cyclin B1/B2 expression was found to parallel that of REX1. REX1 positively regulates the transcriptional activity of cyclin B1/B2 through binding to their promoters. REX1 induces the phosphorylation of DRP1 at Ser616 by cyclin B/CDK1, which leads to mitochondrial fission and appears to be important for meeting the high-energy demands of highly glycolytic hPSCs. During reprogramming to pluripotency by defined factors (OCT4, SOX2, KLF4, and c-MYC), the reprogramming kinetics and efficiency are markedly improved by adding REX1 or replacing KLF4 with REX1. These improvements are achieved by lowering reprogramming barriers (growth arrest and apoptosis), by enhancing mitochondrial fission, and by conversion to glycolytic metabolism, dependent on the cyclin B1/B2-DRP1 pathway. Our results show that a novel pluripotency regulator, REX1, is essential for pluripotency and reprogramming.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3