Boosting CO2 electroreduction to HCOOH at high current density through tuning the electronic metal‐support interaction

Author:

Ning Chenjun1,Wu Zhaohui1,Bai Sha1,Ren Jing1,Li Shaoquan1,Xiong Wenbo1,Zheng Lirong2,Zheng Jianwei3,Song Yu‐Fei14ORCID,Zhao Yufei14ORCID

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing People's Republic of China

2. Institute of High Energy Physics, Chinese Academy of Sciences Beijing People's Republic of China

3. College of Chemistry and Chemical Engineering Xiamen University Xiamen People's Republic of China

4. Quzhou Institute for Innovation in Resource Chemical Engineering Quzhou People's Republic of China

Abstract

AbstractElectrocatalytic CO2 reduction (CO2ER) to valuable chemicals, for example, HCOOH have received widespread attention, which still suffers from moderate Faradaic efficiency with low current regarding the wide industrial application of HCOOH. Herein, we employed a strategy of modifying electronic metal‐support interaction (EMSI) by fabricating Bi nanoparticles supported Ni‐modified Bi2O2CO3 (Bi/Ni‐BOC) heterostructure. The obtained Bi/Ni‐BOC exhibited high formate Faradic efficiency (FEHCOOH) of 97% at −2.1 V (vs. Ag/AgCl) and above 90% within broad potential range (−1.7 to −2.2 V) in flow cell with superior stability at high current density of ~220 mA cm−2, and formate concentration can reach 2.4 mmol h−1 cm−2 at −2.3 V. In/ex situ x‐ray absorption fine structure (XAFS) and density functional theory (DFT) calculation indicated that Ni doping promoted the enhancement of EMSI, which improved the generation and stable existence of electron‐rich Bi to boost CO2 activation and *OHCO hydrogenation, thus facilitating highly‐efficient formate production with hydrogen evolution reaction (HER) inhibition.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3