Influence of vinyl polyhedral oligomeric silsesquioxane with different functionalities and cage structures on the mechanical properties and ablation resistance of EPDM composites

Author:

Wang Shumeng1,Ma Xutao1,Ma Xiaoyan1ORCID,Wang Jian1,Zhang Zongwu1,Niu Zhaoqi1,Xu Peidong1,Hou Xiao2

Affiliation:

1. School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China

2. Forty‐first Research Institute of the Fourth Research Institute China Aerospace Science and Technology Corporation Xi'an People's Republic of China

Abstract

AbstractFour vinyl polyhedral oligomeric silsesquioxane (POSS) with different functionalities and cage structures, monovinyl‐POSS (monov‐POSS), divinyl‐POSS (div‐POSS), trivinyl‐POSS (triv‐POSS), and tetravinyl‐POSS (tetrav‐POSS) were prepared and blended into fiber‐reinforced ethylene propylene diene monomer (EPDM—EPDM/AF) in the form of chemical cross‐linking to obtain four modified composites with various cross‐linked network structures and cage structures to investigate the influences and improvement of cross‐linking network and cage structures on the mechanical, thermal stability and ablation resistance of EPDM/AF. The results showed that the POSS of multi‐functionality with small steric hindrance, such as tetrafunctional tetrav‐POSS, can most significantly improve mechanical properties of EPDM/AF by forming denser crosslinking network structures, and the tensile strength and elongation at break of EPDM/AF/tetrav‐POSS can be increased 73.3% and 42.1% compared with EPDM/AF, respectively. POSS that has a complete cage structure and enables the modified composites to obtain a relatively dense cross‐linked network structure, such as difunctional div‐POSS can more substantially enhance the thermal stability and ablative resistance of EPDM/AF with the LAR and MAR of EPDM/AF/div‐POSS reduced by 25.2% and 10.5% compared to EPDM/AF, respectively. High‐temperature thermal transition of four modified composites at gradient temperatures was investigated to explain the relationship between the structure of POSS and ablation properties.Highlights Four POSS with different functionalities and cage structures were designed. Mechanical and ablative properties were reinforced by four vinyl POSS. Multifunctional POSS can most significantly improve mechanical properties. Functionality and cage structure together influence ablative property. High‐temperature thermal transition of modified composites was investigated

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3