A q‐Erkuş–Srivastava polynomials operator

Author:

Agrawal Purshottam Narain1ORCID,Baxhaku Behar2ORCID,Singh Jitendra Kumar1ORCID

Affiliation:

1. Department of Mathematics Indian Institute of Technology Roorkee Roorkee India

2. Department of Mathematics University of Prishtina “Hasan Prishtina” Prishtina Kosovo

Abstract

Chan et al. (Integral Transforms Spec. Funct. 12 (2), 139–148, (2001)) constructed a multivariable extension of the Lagrange polynomials, popularly known as the Chan–Chyan–Srivastava polynomials. Altin and Erkuş (Integral Transforms Spec. Funct. 17, 239–244, (2006)) proposed Lagrange–Hermite polynomials in several variables. Erkuş and Srivastava (Integral Transforms Spec. Funct., 17, 267–273, (2006)) presented an unification (and generalization) of the Chan–Chyan–Srivastava polynomials and the multivariable Lagrange–Hermite polynomials, called as Erkuş–Srivastava polynomials. Duman (Taiwanese J. Math. 12 (2), 539‐543, (2008)) defined a ‐analogue of these generalized multivariable polynomials. Inspired by these studies, we construct a linear positive operator by means of the ‐Erkuş–Srivastava multivariable polynomials and study the Korovkin‐type theorems and the rate of convergence of these operators by using summability techniques of weighted ‐statistical convergence and the power series method. We also define a th‐order Taylor generalization of the multivariable polynomials operator and investigate the approximation of th‐order continuously differentiable Lipschitz class elements. Finally, we define the bivariate case of ‐Erkuş–Srivastava multivariable polynomials operator and study its ‐statistical convergence by using four‐dimensional matrix transformation.

Publisher

Wiley

Reference73 articles.

1. Démonstration du théorém de Weierstrass fondée sur la calcul des probabilitiés;Bernstein S. N.;Comm. Soc. Math. Charkow Sér. t.,1912

2. Approximation of functions by a new class of linear polynomial operators;Stancu D. D.;Rev. Roumaine Math. Pures Appl.,1968

3. Sur certains developpements suivant les polynomes de la forme de S. Bernstein;Kantorovich L. V.;C. R. Acad. USSR,1930

4. Generalization of Bernstein's polynomials to the infinite interval

5. J. L.Durrmeyer. (1967).Une formule d'inversion de la Transformée de Laplace: Applications á La Théorie des Moments Thése de 3e Cycle Ph.D. thesis Faculté des Sciences l'Université de Paris.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3