Modeling isovolumetric phases in cardiac flows by an Augmented Resistive Immersed Implicit Surface method

Author:

Zingaro Alberto12ORCID,Bucelli Michele1ORCID,Fumagalli Ivan1ORCID,Dede' Luca1ORCID,Quarteroni Alfio13

Affiliation:

1. MOX, Laboratory of Modeling and Scientific Computing, Dipartimento di Matematica Politecnico di Milano Milan Italy

2. ELEM Biotech S.L. Barcelona Spain

3. Institute of Mathematics École Polytechnique Fédérale de Lausanne Lausanne Switzerland

Abstract

AbstractA major challenge in the computational fluid dynamics modeling of the heart function is the simulation of isovolumetric phases when the hemodynamics problem is driven by a prescribed boundary displacement. During such phases, both atrioventricular and semilunar valves are closed: consequently, the ventricular pressure may not be uniquely defined, and spurious oscillations may arise in numerical simulations. These oscillations can strongly affect valve dynamics models driven by the blood flow, making unlikely to recovering physiological dynamics. Hence, prescribed opening and closing times are usually employed, or the isovolumetric phases are neglected altogether. In this article, we propose a suitable modification of the Resistive Immersed Implicit Surface (RIIS) method (Fedele et al., Biomech Model Mechanobiol 2017, 16, 1779–1803) by introducing a reaction term to correctly capture the pressure transients during isovolumetric phases. The method, that we call Augmented RIIS (ARIIS) method, extends the previously proposed ARIS method (This et al., Int J Numer Methods Biomed Eng 2020, 36, e3223) to the case of a mesh which is not body‐fitted to the valves. We test the proposed method on two different benchmark problems, including a new simplified problem that retains all the characteristics of a heart cycle. We apply the ARIIS method to a fluid dynamics simulation of a realistic left heart geometry, and we show that ARIIS allows to correctly simulate isovolumetric phases, differently from standard RIIS method. Finally, we demonstrate that by the new method the cardiac valves can open and close without prescribing any opening/closing times.

Publisher

Wiley

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Modeling and Simulation,Biomedical Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3