Discharge coefficient prediction and sensitivity analysis for triangular broad‐crested weir using machine learning methods

Author:

Shen Guiying1ORCID,Cao Dingye2,Parsaie Abbas3

Affiliation:

1. Department of Hydraulic Engineering, College of Civil Engineering and Architecture Zhejiang University Hangzhou China

2. State Key Laboratory of Eco‐hydraulics in Northwest Arid Region of China Xi'an University of Technology Xi'an China

3. Faculty of Water Sciences Engineering Shahid Chamran University of Ahvaz Ahvaz Iran

Abstract

AbstractThe broad‐crested weir is convenient to construct and has a small amount of excavation, widely used in practical engineering. Discharge computing has been the focus of research on this structure, thus developing generalized regression neural network (GRNN), genetic programming (GP), and extreme learning machine (ELM) are used to predict the discharge coefficient (Cd) of the triangular broad‐crested weir. The comprehensive analysis shows that the ELM model has high stability, predictive ability, and computational speed. The coefficient of determination (R^2) is 0.99982, the mean absolute percentage error (MAPE) is 0.000261, the Nash‐Sutcliffe coefficient (NSE) is 0.99977, and the root means square error (RMSE) is 4.17E‐05 in the testing phase. The apex angle θ is the most critical parameter affecting the Cd, and the contribution to the Cd is 52.45%. A new computational formula is proposed and compared with the accuracy of empirical formulas, showing that the intelligent method has higher accuracy and efficiency.

Publisher

Wiley

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3