Nano‐BN/Nano‐TiO2 and micro Mg(OH)2 loaded hybrid ethylene propylene diene monomer elastomer composites for outdoor high‐voltage insulation application

Author:

Rizwan Mohammed1,Shaik Aabid Hussain1,Rahaman Ariful2,Patro T. Umashankar3,Rahaman Mostafizur4,Periyasami Govindasami4,Chandan Mohammed Rehaan1ORCID

Affiliation:

1. Colloids and Polymers Research Group, School of Chemical Engineering Vellore Institute of Technology Vellore Tamilnadu India

2. School of Mechanical Engineering Vellore Institute of Technology Vellore Tamilnadu India

3. Department of Materials Engineering Defence Institute of Advanced Technology Pune Maharashtra India

4. Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia

Abstract

AbstractThis work deals with the synthesis, characterization of hybrid ethylene propylene diene monomer (EPDM) composites loaded with nano‐boron nitride (nano‐BN)/nano‐titanium dioxide (nano‐TiO2) and micro Mg(OH)2 particles for its suitability towards high‐voltage insulation application. The elastomer samples were prepared by carefully dispersing the micro and nano fillers during the mastication process of EPDM polymer using a two roll mill, followed by vulcanization. The samples were characterized for mechanical, morphological, thermal, and electrical insulation properties. The highest tensile strength among the composite samples was noted for 1 phr nanoparticles loaded samples. Fourier Transform Infrared (FTIR) results show no change in the chemical moiety upon addition of nano‐BN/nano‐TiO2 in EPDM composites. Enhancement in hydrophobicity is observed for 3 phr nano‐TiO2 loaded composites, which shows a maximum static contact angle of 110°. Meanwhile remarkable enhancement in the thermal conductivity and volume resistance of the composites are contributed to the addition of nano‐BN, thereby achieving maximum dielectric breakdown voltage (i.e., ~21 kV/mm for EMB3). Scanning electron microscope images and atomic force microscopy (AFM) topography highlight that low concentration (i.e., 1 phr) based composites have homogeneous dispersion in matrix and excessive nano filler addition deteriorates properties by forming filler aggregates and increasing surface roughness.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3