Mobility‐compatible cache controlled cluster networking protocol

Author:

Sunhare Priyank12,Chattopadhyay Manju K.3ORCID

Affiliation:

1. Department of Electronics and Telecommunication Engineering Government Polytechnic College Dewas India

2. Institute of Engineering and Technology Devi Ahilya University Indore India

3. School of Electronics Devi Ahilya University Indore India

Abstract

SummaryThe cluster networking protocols are the roots that embed intelligent decision‐making and enhance the lifespan of wireless sensor networks (WSNs). Wireless sensors with limited capabilities face several challenges due to the heterogeneous application environments. Especially, the mobility‐incorporated sensors in most situations trouble the cluster network's robustness. Many cluster networking protocols have been presented in the past to enhance the network lifespan and data delivery ratio. However, they lack a dedicated and efficient mechanism for mobility assistance, an adequate cluster management process and cluster head selection criteria. To overcome these issues and for the uniform energy load distribution, we propose a mobility‐compatible cache controlled cluster networking protocol (MC‐CCCNP) in this paper. It is an energy‐efficient cluster networking protocol that supports sensor movement. Network resource management and routing are controlled distributively by an optimal number of cache nodes. It defines a new strategy for cache node deployment based on neighbour density as well as a weight formula for cluster head selection and cluster formation based on the residual energy, the distance to the base station and the node velocity. It also includes techniques for detaching and reconnecting a mobile node to an appropriate cluster cache if it crosses the cluster boundary. We simulate and compare the performance of our protocol with the centralised energy‐efficient clustering routing, energy‐efficient mobility‐based cluster head selection protocol and dual tier cluster‐based routing protocols over different network configurations with varying mobility, scalability and heterogeneity. The MC‐CCCNP showed remarkable improvements in energy utilisation uniformity and energy consumption. With the improved network lifespan, it also maintains a higher data throughput rate of 95% or more in almost all network configurations.

Publisher

Wiley

Reference25 articles.

1. ShrivastavK BattulaRB. “WSN‐IoT integration with artificial intelligence: research opportunities and challenges ” Proceedings of the International Conference on Paradigms of Computing Communication and Data Sciences. Algorithms for Intelligent Systems Springer Singapore.2023. doi:10.1007/978‐981‐19‐8742‐7_31.

2. A Survey of Artificial Intelligence Based WSNs Deployment Techniques and Related Objectives Modeling

3. A review paper on wireless sensor network techniques in Internet of Things (IoT)

4. I-SEP: An Improved Routing Protocol for Heterogeneous WSN for IoT-Based Environmental Monitoring

5. Internet of things and data mining: An application oriented survey

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3