Freshwater salinization and the evolved tolerance of amphibians

Author:

Relyea Rick1,Mattes Brian1,Schermerhorn Candace1,Shepard Isaac1

Affiliation:

1. Department of Biological Sciences Rensselaer Polytechnic Institute Troy New York USA

Abstract

AbstractThe increasing salinization of freshwaters is a growing environmental issue as a result of mining, agriculture, climate change, and the application of de‐icing salts in regions that experience ice and snow. Due to narrow osmotic limits, many freshwater species are particularly susceptible to salinization, but it is possible that repeated exposures over time could favor the evolution of increased salt tolerance. Using collected nine populations of larval wood frogs (Rana sylvatica) as eggs from ponds and wetlands with close proximity to roads and spanning a wide gradient of salt concentrations. In the first experiment, we used a time‐to‐death experiment to examine the salt tolerance. In a second experiment, we examined whether population differences in salt tolerance were associated with trade‐offs in growth, development, or behavior in the presence of control water or a sublethal salt concentration. We found that populations collected from ponds with low and intermediate salt concentrations exhibited similar tolerance curves over a 96‐h exposure. However, the population from a pond with the highest salt concentration exhibited a much higher tolerance. We also found population differences in growth, development, and activity level among the populations, but these were not associated with population differences in tolerance. In addition, the sublethal concentration of salt had no impact on growth and development, but it did cause a reduction in tadpole activity across the populations. Collectively, these results provide further evidence that some species of freshwater organisms can evolve tolerance to increasing salinization, although it may only occur under relatively high concentrations and without trade‐offs in growth, development, or behavior.

Funder

Directorate for Biological Sciences

Rensselaer Polytechnic Institute

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3