Modelling heterogeneity in the classification process in multi‐species distribution models can improve predictive performance

Author:

Adjei Kwaku Peprah123ORCID,Finstad Anders Gravbrøt24ORCID,Koch Wouter25ORCID,O'Hara Robert Brian12ORCID

Affiliation:

1. Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim Norway

2. Center for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway

3. Norwegian Institute for Nature Research Trondheim Norway

4. Department of Natural History Norwegian University of Science and Technology Trondheim Norway

5. Norwegian Biodiversity Information Centre Trondheim Norway

Abstract

AbstractSpecies distribution models and maps from large‐scale biodiversity data are necessary for conservation management. One current issue is that biodiversity data are prone to taxonomic misclassifications. Methods to account for these misclassifications in multi‐species distribution models have assumed that the classification probabilities are constant throughout the study. In reality, classification probabilities are likely to vary with several covariates. Failure to account for such heterogeneity can lead to biased prediction of species distributions. Here, we present a general multi‐species distribution model that accounts for heterogeneity in the classification process. The proposed model assumes a multinomial generalised linear model for the classification confusion matrix. We compare the performance of the heterogeneous classification model to that of the homogeneous classification model by assessing how well they estimate the parameters in the model and their predictive performance on hold‐out samples. We applied the model to gull data from Norway, Denmark and Finland, obtained from the Global Biodiversity Information Facility. Our simulation study showed that accounting for heterogeneity in the classification process increased the precision of true species' identity predictions by 30% and accuracy and recall by 6%. Since all the models in this study accounted for misclassification of some sort, there was no significant effect of accounting for heterogeneity in the classification process on the inference about the ecological process. Applying the model framework to the gull dataset did not improve the predictive performance between the homogeneous and heterogeneous models (with parametric distributions) due to the smaller misclassified sample sizes. However, when machine learning predictive scores were used as weights to inform the species distribution models about the classification process, the precision increased by 70%. We recommend multiple multinomial regression to be used to model the variation in the classification process when the data contains relatively larger misclassified samples. Machine learning prediction scores should be used when the data contains relatively smaller misclassified samples.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3