Light–dark cycles may influence in situ soil bacterial networks and diurnally‐sensitive taxa

Author:

Fickling Nicole W.1ORCID,Abbott Catherine A.1ORCID,Brame Joel E.1ORCID,Cando‐Dumancela Christian1ORCID,Liddicoat Craig1ORCID,Robinson Jake M.1ORCID,Breed Martin F.1ORCID

Affiliation:

1. College of Science and Engineering Flinders University Bedford Park South Australia Australia

Abstract

AbstractSoil bacterial taxa have important functional roles in ecosystems (e.g. nutrient cycling, soil formation, plant health). Many factors influence their assembly and regulation, with land cover types (e.g. open woodlands, grasslands), land use types (e.g. nature reserves, urban green space) and plant–soil feedbacks being well‐studied factors. However, changes in soil bacterial communities in situ over light–dark cycles have received little attention, despite many plants and some bacteria having endogenous circadian rhythms that could influence soil bacterial communities. We sampled surface soils in situ across 24‐h light–dark cycles (at 00:00, 06:00, 12:00, 18:00) at two land cover types (remnant vegetation vs. cleared, grassy areas) and applied 16S rRNA amplicon sequencing to investigate changes in bacterial communities. We show that land cover type strongly affected soil bacterial diversity, with soils under native vegetation expressing 15.4%–16.4% lower alpha diversity but 4.9%–10.6% greater heterogeneity than soils under cleared vegetation. In addition, we report time‐dependent and site‐specific changes in bacterial network complexity and between 598–922 ASVs showing significant changes in relative abundance across times. Native site node degree (bacterial interactions) at the phylum level was 16.0% higher in the early morning than in the afternoon/evening. Our results demonstrate for the first time that light–dark cycles have subtle yet important effects on soil bacterial communities in situ and that land cover influences these dynamics. We provide a new view of soil microbial ecology and suggest that future studies should consider the time of day when sampling soil bacteria.

Funder

Australian Research Council

Publisher

Wiley

Reference74 articles.

1. Bates D. Maechler M. Jagan M. Davis T. A. Oehlschlä J. Riedy J. &R Core Team. (2023).Package ‘matrix’. R Package Version 1.5–4.https://cran.r‐project.org/web/packages/Matrix/index.html

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3