Soil respiration and controls in warmer winter: A snow manipulation study in postfire and undisturbed black pine forests

Author:

Pacaldo Renato S.12ORCID,Aydin Mirac1,Amarille Randell Keith12

Affiliation:

1. Faculty of Forestry Kastamonu University Kastamonu Turkey

2. College of Forestry and Environmental Studies Mindanao State University Marawi City Philippines

Abstract

AbstractClimate change impacts drive warmer winters, reduced snowfall, and forest fires. In 2020, a wildfire scorched about 1508 hectares of black pine (Pinus nigra Arnold) forests in Türkiye. Whether the combined effects of lack of snow and forest fires significantly alter winter soil respiration (Rs) and soil temperature remains poorly understood. A field experiment was conducted in the postfire and undisturbed black pine forests during the winter to quantify Rs rates as affected by lack of snow and forest fire. We applied four treatments: snow‐exclusion postfire (SEPF), snow postfire (SPF), snow‐exclusion‐undisturbed forest (SEUF), and snow undisturbed forest (SUF). The SEPF exhibited the significantly lowest mean Rs rates (0.71 μmol m−2 s−1) compared to the SPF (1.02 μmol m−2 s−1), SEUF (1.44 μmol m−2 s−1), and SUF (1.48 μmol m−2 s−1). The Rs also showed significant variations with time (p < .0001). However, treatments and time revealed no statistically significant interaction effects (p = .6801). Total winter Rs (January–March) ranged from 4.47 to 4.59 Mt CO2 ha−1 in the undisturbed forest and 2.20 to 3.16 Mt CO2 ha−2 in the postfire site. The Rs showed a significantly positive relationship (p < .0001) with the soil (0.59) and air (0.46) temperatures and a significantly negative relationship (p = .0017) with the soil moisture (−0.20) at the 5 cm depth. In contrast, the Rs indicated a negative but not statistically significant relationship (p = .0932) with the soil moisture (−0.16) at the 10 cm soil depth. The combined effects of lack of snow and forest fire significantly decreased Rs, thus conserving the soil's organic carbon stocks and reducing the CO2 contribution to the atmosphere. In contrast, a warmer winter significantly increased Rs rates in the undisturbed forest, suggesting an acceleration of soil organic carbon losses and providing positive feedback to climate change.

Funder

Ulusal Metroloji Enstitüsü, Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

European Commission

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3