Affiliation:
1. School of Aquatic and Fishery Sciences University of Washington Seattle Washington USA
2. Yale Peabody Museum Yale University New Haven Connecticut USA
3. Department of Arts and Sciences Neumann University Aston Pennsylvania USA
4. Unit for Environmental Sciences and Management North–West University Potchefstroom South Africa
5. Seafood Products Association Seattle Washington USA
Abstract
AbstractHow has parasitism changed for Alaskan salmon over the past several decades? Parasitological assessments of salmon are inconsistent across time, and though parasite data are sometimes noted when processing fillets for the market, those data are not retained for more than a few years. The landscape of parasite risk is changing for salmon, and long‐term data are needed to quantify this change. Parasitic nematodes of the family Anisakidae (anisakids) use salmonid fishes as intermediate or paratenic hosts in life cycles that terminate in marine mammal definitive hosts. Alaskan marine mammals have been protected since the 1970s, and as populations recover, the density of definitive hosts in this region has increased. To assess whether the anisakid burden has changed in salmonids over time, we used a novel data source: salmon that were caught, canned, and thermally processed for human consumption in Alaska, USA. We examined canned fillets of chum (Oncorhynchus keta, n = 42), coho (Oncorhynchus kisutch, n = 22), pink (Oncorhynchus gorbuscha, n = 62), and sockeye salmon (Oncorhynchus nerka, n = 52) processed between 1979 and 2019. We dissected each fillet and quantified the number of worms per gram of salmon tissue. Anisakid burden increased over time in chum and pink salmon, but there was no change in sockeye or coho salmon. This difference may be due to differences in the prey preferences of each species, or to differences in the parasite species detected across hosts. Canned fish serve as a window into the past, providing information that would otherwise be lost, including information on changes over time in the parasite burden of commercially, culturally, and ecologically important fish species.
Funder
Washington Research Foundation
National Science Foundation
University of Washington
Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington
School of Aquatic and Fishery Sciences
Alfred P. Sloan Foundation