Exploring fishing threat at fleet segment and subregional scale: Least expert knowledge and a resilience versus disturbance‐based approach as conservation's tools for cartilaginous fish

Author:

Scacco Umberto12ORCID,Di Crescenzo Simone3ORCID,Sbrana Alice45ORCID

Affiliation:

1. National Centre of Laboratories‐Biology Italian Institute for Environmental Protection and Research (ISPRA) Rome Italy

2. Department of Bio Ecological Sciences University of Tuscia Viterbo Italy

3. Department of Life and Environmental Sciences University of Cagliari Cagliari Italy

4. Department of Biology University of Rome Tor Vergata Rome Italy

5. PhD program in Evolutionary Biology and Ecology University of Rome Tor Vergata Rome Italy

Abstract

AbstractBased on an explorative but rigorous elicitation framework, we obtained the bycatch fishing probability at the fishing fleet segment level using expert estimates. Based on the knowledge of three scientific experts, we developed a new and creative structured method for smart and fast fishery‐related risk assessments for species of high conservation concern. In order to test the method here propose, we applied it to 76 cartilaginous fish species (included in the IUCN Red Lists) and on five different fishing segments at both Italian and Mediterranean scale. The method produced qualitative results specific to the threat posed by fishing for each species and each segment with information between and within the segments. Based on the interpretation of resilience–disturbance interactions developed for ecological systems, the quantitative results provided reliable cumulative metrics, measuring the extinction risk due to fishing and the response to overfishing for the species considered. Additionally, the results highlight that the method perform best on a small geographic scale. Therefore, the application of this new method on other subregional or local scales where very few data are available (e.g., fishing effort) could be a valuable tool for the preliminary assessment for species of conservation concern. In fact, despite the absence of detailed catch data at local geographic scales, the flexibility of this method could help to highlight potential fishery‐related conservation problems and thus redirect conservation strategies for threatened marine species such as many sharks and rays species.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3