Fully automated viability and toxicity screening—A reliable all‐in‐one attempt

Author:

Liedtke Victoria1ORCID,Weiss Romano1,Skifov Anastasia1,Rödiger Stefan12,Schenk Lysann1

Affiliation:

1. Faculty of Natural Sciences Brandenburg University of Technology Cottbus‐Senftenberg Senftenberg Germany

2. Faculty of Health Sciences Brandenburg University of Technology Cottbus‐Senftenberg Senftenberg Germany

Abstract

AbstractBackgroundThe CRISPR/Cas9 technology is nowadays a common tool for genome editing to achieve new insights into, for example, diagnostics and therapeutics in cancer and genetic disorders. Cell proliferation and anticancer drug response studies are widely used to evaluate the impact of editing. However, these assays are often time‐consuming, expensive, and reproducibility is an issue. To overcome this, we developed a fast and cheap assay that combines a fully automated multispectral fluorescence microscopy platform with a nuclei staining and open‐source software analysis.MethodsHere, we generated different LEDGF/p75 model cell lines to validate the effect on proliferation and chemosensitivity. Therefore, a fast protocol for an optimized all‐in‐one attempt for cytotoxicity screenings and proliferation analysis of adherent cells in a 96‐well plate format was established using differential staining with two fluorescent dyes (Hoechst 33342 and propidium iodide) for live/dead cell discrimination. Subsequently, an automated cell nuclei count and analysis were performed using bioimage informatics.ResultsWith the new established assay technology, up to 50,000 cells/well can be detected and analyzed in a 96‐well plate, resulting in a fast and accurate verification of viability and proliferation with consistency of 98% compared to manual counting. Our screening revealed that LEDGF depletion using CRISPR/Cas9 showed a diminished proliferation and chemosensitivity independent of cell line origin. Moreover, LEDGF depletion caused a significant increase in 𝛾H2AX foci, indicating a substantial increase in DNA double strand breaks. LEDGF/p75 overexpression enhanced proliferation and chemoresistance underlining the role of LEDGF in DNA damage response.ConclusionIndependent of cancer cell type, LEDGF/p75 is a central player in DNA damage repair and is implicated in chemoresistance. Moreover, our automated fluorescence biosensor technology allowed fast and reliable data acquisition without any fixation or additional washing steps. Additionally, data analysis was implemented using the modular open‐source software that can be adapted as needed.

Funder

Friedrich Naumann Stiftung

Bundesministerium für Bildung und Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3