Electron energy levels determining cathode electrolyte interphase formation

Author:

Zhang Zhengfeng1,Qin Changdong1,Cheng Xiaopeng1,Li Jinhui1,Zhang Yuefei2,Zhao Wengao3,Wang Le4,Du Yingge4,Sui Manling1,Yan Pengfei1ORCID

Affiliation:

1. Beijing Key Laboratory of Microstructure and Property of Solids Faculty of Materials and Manufacturing Beijing University of Technology Beijing China

2. Institute of Superalloys Science and Technology School of Materials Science and Engineering Zhejiang University Hangzhou China

3. Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Eggenstein‐Leopoldshafen Germany

4. Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland Washington USA

Abstract

AbstractCathode electrolyte interphase (CEI) has a significant impact on the performance of rechargeable batteries and is gaining increasing attention. Understanding the fundamental and detailed CEI formation mechanism is of critical importance for battery chemistry. Herein, a diverse of characterization tools are utilized to comprehensively analyze the composition of the CEI layer as well as its formation mechanism by LiCoO2 (LCO) cathode. We reveal that CEI is mainly composed of the reduction products of electrolyte and it only parasitizes the degraded LCO surface which has transformed into a disordered spinel structure due to oxygen loss and lithium depletion. Based on the energy diagram and the chemical potential analysis, the CEI formation process has been well explained, and the proposed CEI formation mechanism is further experimentally validated. This work highlights that the CEI formation process is nearly identical to that of the anode‐electrolyte‐interphase, both of which are generated due to the electrolyte directly in contact with the low chemical potential electrode material. This work can deepen and refresh our understanding of CEI.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3