Metal organic framework composite based on CuBTC/SPION for application in methylene blue adsorption

Author:

Nguyen Thu Phuong1ORCID,Nguyen Thi Thom1,Pham Thi Nam1,Do Thi Hai2,Osial Magdalena3,Le Minh Khoi4,Nguyen Hong Nam4,Le Phuong Thu4,Dinh Thi Mai Thanh4

Affiliation:

1. Institute for Tropical Technology Vietnam Academy of Science and Technology Cau Giay Hanoi Vietnam

2. Faculty of Basic Science Hanoi University of Mining and Geology Bắc Từ Liêm Hanoi Vietnam

3. Department of Theory of Continuous Media and Nanostructures, Institute of the Fundamental Technological Research Polish Academy of Sciences Warsaw Poland

4. University of Science and Technology of Hanoi Vietnam Academy of Science and Technology Cau Giay Hanoi Vietnam

Abstract

AbstractIn this work, a composite (CuBTC/superparamagnetic iron oxide nanoparticles [SPION]) based on copper, benzene‐1,3,5‐tricarboxylic acid (CuBTC) and SPION was synthesized by electrochemical method for the magnetic separation of methylene blue (MB) from aqueous solutions. The synthesis of the proposed composite was carried out under various experimental conditions from 1.4 to 5.4 V for 1–5 h and subsequently studied using different techniques. Scanning electron microscopy showed a granular structure, whereas Brunauer–Emmett–Teller results revealed a well‐developed surface area of around 182 m2 g−1. Fourier transform infrared confirmed the presence of functional groups characteristic to CuBTC and Fe3O4, whereas X‐ray diffraction revealed the phase structure of CuBTC 1D, CuBTC 3D, and Fe3O4 in the obtained composite. Based on the experimental results, the sample synthesized under a potential of 1.4 V for 5 h was selected for MB adsorption studies in the function of adsorbent mass, contact time, solution pH, ionic strength, initial concentration, and temperature. The maximum adsorption capacity was 681 mg g−1, and the adsorption undergoes the Redlich–Peterson and Sips isotherm model. The results obtained for CuBTC/SPION indicate that the nanocomposite is a promising adsorbent for removing MB in synthetic dye water and wastewater.

Funder

Wallonie-Bruxelles International

Vietnam Academy of Science and Technology

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3