Temporal dynamics, meteorological effects, secondary organic aerosol estimation, and source identification of size‐segregated carbonaceous aerosols

Author:

Tarhan Burçak1,Koçak Ebru1ORCID

Affiliation:

1. Department of Environmental Engineering Aksaray University Aksaray Turkey

Abstract

AbstractDuring the period 2019–2020, size‐segregated aerosol samples containing elemental and organic carbon (EC and OC) were investigated. These samples were collected weekly using an eight‐stage cascade impactor from an urban site located at Aksaray University, Aksaray. The quantification of EC and OC was carried out through a thermal‐optical transmission device. The results revealed consistent size distribution attributes of EC and OC between winter and summer. Although EC accounted for an insignificant percentage (4.4%) of particulate matter (PM) in the PM9.0–10.0 fraction during winter, a more substantial portion of OC in the same fraction (13.4%) comprised EC. Seasonal variations were distinct for EC but not significant for OC. Strong correlations between OC and EC were observed in coarse particle fractions, indicating a common source, with weaker correlations in fine particles. The highest OC/EC ratio was in the PM0.43–0.65 fraction, followed by PM2.1–3.3. The ratio of OC to EC in fine PM exceeded the threshold of 15 consistently. The observation indicates that as particle size increases, there is a noticeable decline in the OC to EC ratios. Secondary organic aerosols (SOA) accounted for 60.8% (winter) and 89.8% (summer) of OC values, emphasizing the substantial impact of SOA on Aksaray's atmosphere. Both seasons exhibited a multimodal distribution of ambient OC. In winter, the EC distribution was dominated by fine particles, with a bimodal pattern (PM1.1–2.1 and PM0.43–0.65 peaks). Common pollutant sources, including traffic emissions, road dust, biogenic emissions, and coal combustion, were identified for both seasons in coarse and fine particle fractions. These findings underscore the importance of emission control strategies targeting fine PM in Aksaray.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3