Potential positive effects of natural sunlight on a biological system for landfill leachate treatment

Author:

Cai Liyun1

Affiliation:

1. Key Laboratory of Estuarine Ecological Security and Environmental Health Xiamen University Tan Kah Kee College Zhangzhou PR China

Abstract

AbstractActivated sludge filtration performance is a significant mean to evaluate membrane fouling trend for wastewater treatment. Here the impact of sunlight irradiation on activated sludge filtration performance and microbial communities in sequencing batch reactors (SBRs) when treating raw landfill leachate were studied. The sludge in photic SBR (i.e., SBR exposed to natural sunlight) exhibited better filtration performance compared to dark SBR (i.e., SBR unexposed to sunlight). The removal efficiency of COD and NH4+‐N in the photic SBR were slightly higher than those in the dark SBR. The contents of the extracellular polymeric substances (EPSs) of sludge in both SBRs initially increased and then decreased. However, in the later period, the sludge filtration performance worsened due to the fungal activity in the dark SBR. Natural sunlight irradiation promoted sludge filtration performance by affecting the microorganism structure in the photic SBR. The bacterial genus Thauera was dominant in the photic SBR (39.35%), whereas Planktosalinus and Ottowia were dominant in the dark SBR (16.84% and 12.55%, respectively). Natural sunlight irradiation had a prominent effect on the fungal diversity in the system, and filamentous bulking caused by the fungi genus Trichosporon’s proliferation was observed in the dark SBR but not in the photic SBR, which also increased the polysaccharide content.

Publisher

Wiley

Subject

Pollution,Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3