Fabrication of TiO2/CNTs composite electrode with improved performance in capacitive deionization

Author:

Nguyen Thao Trang Le1,Nguyen Thanh Tung2,Nguyen Hoang Anh34,Ngo Hoang Long2ORCID,Nguyen Thu Thao1,Vo Quoc Khuong34,Huynh Le Thanh Nguyen34ORCID,Thi Thu Trang Nguyen1

Affiliation:

1. University of Education Ho Chi Minh City Vietnam

2. VKTech Research Center NTT Hi‐Tech Institute Nguyen Tat Thanh University Ho Chi Minh City Vietnam

3. University of Science Ho Chi Minh City Vietnam

4. Vietnam National University of Ho Chi Minh (VNUHCM) Ho Chi Minh City Vietnam

Abstract

AbstractMany studies have shown that capacitance deionization (CDI) has great potential in salt‐water treatment, one of the issues of great concern in many countries, especially Vietnam. The electrode material in CDI is one of the essential factors contributing to the desalination efficiency of this technology, so it is of research interest. In this study, TiO2 and TiO2/carbon nanotubes (CNTs) were synthesized from the sol‐gel process and utilized as an electrode for desalination. The composite materials were intensively characterized by X‐ray diffraction, Raman spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, Brunauer–Emmett–Teller and thermal analysis. The electrochemical properties were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge. The fabricated TiO2/CNTs nanocomposite electrode consisting of 1% CNTs (electrode T1) exhibited remarkable capacitance, conductivity, and durability; thus, it was employed as an electrode for desalination. With this electrode T1, the maximum salt adsorption capacity of 17.5 mg g−1, together with the highest charge efficiency of 90%, was achieved. Therefore, TiO2/CNTs can be considered a suitable electrode candidate for CDI technology.

Publisher

Wiley

Subject

Pollution,Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3