Sintering behavior of ceramic ethylene‐propylene‐diene rubber/pyrophyllite/zinc borate composites

Author:

He Chunjiang1ORCID,Ji Yuan1,Chen Chuanzhi2,Pei Dingfeng1,Gao Ming1,Zhao Jingcun1,Wang Wei1

Affiliation:

1. Metals and Chemistry Research Institute China Academy of Railway Sciences Corporation Limited Beijing China

2. Standards and Metrology Research Institute China Academy of Railway Sciences Corporation Limited Beijing China

Abstract

AbstractCeramic polymer materials have great future applications in the field of fireproof materials. However, ceramic polyolefins have shortcomings such as few available inorganic fillers, high sintering temperature, and low flexural strength. Therefore, achieving rapid sintering of ceramic ethylene‐propylene‐diene rubber (EPDM) is an urgent problem that needs to be solved. Herein, we prepared ceramic EPDM materials using pyrophyllite as aggregate and zinc borate as flux. The materials were prepared using a mixer and sintered in a muffle furnace at 850 and 1000°C. The flexural strength of the sinter residue was tested by a material testing machine. The microstructure changes during the ceramification process were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TG), derivative thermogravimetric analysis (DTG), differential thermal analysis (DTA), and x‐ray diffraction (XRD). The results indicated that the EPDM filled with pyrophyllite and zinc borate had a flexural strength of 2.6 MPa after sintering at 850°C. After sintering at 1000°C, its flexural strength further increased up to 12.3 MPa. The SEM results indicated that as the temperature increased, the zinc borate melted and filled in the space among pyrophyllite particles, and the zinc borate and the pyrophyllite were sintered into a dense whole. The TG, DTG and DTA testing results indicated that the melting and decomposition behaviors of the pyrophyllite‐zinc borate mixture changed compared with pure pyrophyllite and zinc borate. The XRD results indicated that during the sintering process, the crystalline structure of the zinc borate and the pyrophyllite gradually transformed into a quartz‐based crystalline structure. It is promising that the ceramic polyolefin materials are prepared by the pyrophyllite/zinc borate combination.

Funder

China Academy of Railway Sciences

Publisher

Wiley

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3