Prediction of soil moisture using machine learning techniques: A case study of an IoT‐based irrigation system in a naturally ventilated polyhouse

Author:

Challa Lakshmi Poojitha1ORCID,Singh Chandra Deep1,Rao Kondapalli Venkata Ramana1,Subeesh Anakkallan2,Srilakshmi Mandru1

Affiliation:

1. Division of Irrigation and Drainage Engineering ICAR‐Central Institute of Agricultural Engineering Bhopal Madhya Pradesh India

2. Division of Agricultural Mechanization ICAR‐Central Institute of Agricultural Engineering Bhopal Madhya Pradesh India

Abstract

AbstractThe agricultural sector faces a massive challenge in enhancing food production for the growing population with limited water resources. For effective and optimum utilization of fresh water, developing smart irrigation systems based on the internet of things (IoT) is essential for scheduling irrigation based on crop water requirements. In this study, an IoT‐based irrigation system was developed and evaluated inside a greenhouse located in the experimental fields of Indian Council of Agricultural Research‐Central Institute of Agricultural Engineering (ICAR‐CIAE), Bhopal, India. Data on microenvironmental parameters such as temperature, relative humidity, light intensity, soil temperature and soil moisture were collected from the sensors developed inside the greenhouse. Soil moisture was predicted based on the field data collected via different machine learning techniques, such as the decision tree (DT), random forest (RF), multiple linear regression (MLR), extreme gradient boosting (XGB), K‐nearest neighbour (KNN) and artificial neural network (ANN) methods, with three input combinations. The ANN (coefficient of determination [R2] = 0.942, 0.939) models performed well but were found to be less effective than the RF (R2 = 0.991, 0.951) and XGB (R2 = 0.997, 0.941) models in the training and testing phases, respectively. The RF and XGB models outperformed the other models, while the MLR (R2 = 0.955, 0.875) technique underperformed. With respect to both the testing and training datasets, the models trained with all four inputs outperformed the models trained with two or three inputs.

Publisher

Wiley

Reference19 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3