Enhancing complex bioprocess learning through simulation technology and hybrid teaching: A case study in university education

Author:

Cotoras Davor1ORCID

Affiliation:

1. Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas Universidad de Chile Santiago Chile

Abstract

AbstractThe utilization of computer simulators in university education is progressively being embraced to offer students a practical exposure to industrial bioprocesses. Bioreactor computer simulators hold various advantages over conventional laboratory experiments, such as cost‐effectiveness and enhanced safety. The research objective is to assess the effectiveness of integrating bioreactor computer simulators into hybrid teaching to promote active and collaborative learning experiences and evaluate their impact on student participation and understanding. A hybrid strategy combining synchronous, face‐to‐face, and online teaching has been implemented to enhance the teaching‐learning processes in the Industrial Bioprocesses course for Biochemistry students. The simulation software BIOSTAT®T Yeast was used. This software models the production of ethanol with Saccharomyces cerevisiae through batch cultivation and the determination of the kLa value of a bioreactor. In the first simulation activity, students analyzed the software response based on parameter values input by the instructor, while in the second simulation activity, students autonomously used the computer simulator under the primary oversight of the instructor. The survey results indicate that the pedagogical innovation was positively received and significantly motivating for the students. Comparing student satisfaction surveys between the two simulation activities suggests that fostering student autonomy and engagement through simulation technology can improve satisfaction and learning outcomes in bioprocess education.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3