Carbonated castor oil as a bioplasticiser and toughening agent for bisphenol a based epoxy

Author:

Dhore Nikhil12ORCID,Kottaron Amaya Othayoth3,Palanisamy Aruna12ORCID,Narayan Ramanuj24

Affiliation:

1. Polymers and Functional Materials Department CSIR‐Indian Institute of Chemical Technology Hyderabad Telangana India

2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India

3. Department of Polymer Science Central Institute of Petrochemical Engineering and Technology (CIPET‐IPT) Kochi Kerala India

4. CSIR‐Institute of Minerals and Materials Technology Bhubaneswar Odisha India

Abstract

AbstractDiglycidyl ether of bisphenol A (DGEBA), a key intermediate for epoxy resins, provides strong adhesion, processability and the resulting thermoset boasts high cross linking density. However, the inherent brittleness and susceptibility to cracking restrict its advanced applications. To overcome these drawbacks, CO2 fixed cyclic carbonate from castor oil (CCO) was synthesized from epoxidised castor oil (ECO) and used in varying quantities as a toughening agent for amine cured DGEBA. Different amines have been utilized to cure the epoxy and to study the structure–property relationship by fixing the amount of CCO. The inclusion of 10% CCO resulted in improvement in the tensile strength, storage modulus, flexural modulus, and impact strength of the epoxy‐urethane hybrid. Moreover, the epoxy‐urethane networks had reduced cross linking density imparted by the fatty acid units of CCO and the presence of unreacted carbonate groups facilitated molecular movement, thereby contributing to energy dissipation during the deformation process. Further incorporation of the CCO lowers the mechanical properties of the hybrids due to a reduction in cross linking density. Trimethylolpropane tris[poly(propyleneglycol)amine terminated] ether cured system exhibited the highest thermal stability compared to hexamethylene diamine, isophorone diamine, and 4,7,10‐trioxa‐1,13 tridecanediamine. The Tg decreased as the CCO content increased, while the water contact angle increased.

Funder

Department of Chemicals and Petrochemicals, Ministry of Chemicals and Fertilizers, India

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3