Handling missing disease information due to death in diseases that need two visits to diagnose

Author:

Thao Le Thi Phuong1ORCID,Wolfe Rory1,Heritier Stephane1ORCID,Geskus Ronald23ORCID

Affiliation:

1. School of Public Health and Preventive Medicine Monash University Melbourne Victoria Australia

2. Centre for Tropical Medicine and Global Health Oxford University Oxford Oxfordshire UK

3. Oxford University Clinical Research Unit Ho Chi Minh City Vietnam

Abstract

In studies that assess disease status periodically, time of disease onset is interval censored between visits. Participants who die between two visits may have unknown disease status after their last visit. In this work, we consider an additional scenario where diagnosis requires two consecutive positive tests, such that disease status can also be unknown at the last visit preceding death. We show that this impacts the choice of censoring time for those who die without an observed disease diagnosis. We investigate two classes of models that quantify the effect of risk factors on disease outcome: a Cox proportional hazards model with death as a competing risk and an illness death model that treats disease as a possible intermediate state. We also consider four censoring strategies: participants without observed disease are censored at death (Cox model only), the last visit, the last visit with a negative test, or the second last visit. We evaluate the performance of model and censoring strategy combinations on simulated data with a binary risk factor and illustrate with a real data application. We find that the illness death model with censoring at the second last visit shows the best performance in all simulation settings. Other combinations show bias that varies in magnitude and direction depending on the differential mortality between diseased and disease‐free subjects, the gap between visits, and the choice of the censoring time.

Funder

National Health and Medical Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3