Simultaneous variable selection and estimation for survival data via the Gaussian seamless‐L0$$ {L}_0 $$ penalty

Author:

Liu Zili1ORCID,Wang Hong1ORCID

Affiliation:

1. School of Mathematics and Statistics Central South University Changsha Hunan China

Abstract

We propose a new simultaneous variable selection and estimation procedure with the Gaussian seamless‐ (GSELO) penalty for Cox proportional hazard model and additive hazards model. The GSELO procedure shows good potential to improve the existing variable selection methods by taking strength from both best subset selection (BSS) and regularization. In addition, we develop an iterative algorithm to implement the proposed procedure in a computationally efficient way. Theoretically, we establish the convergence properties of the algorithm and asymptotic theoretical properties of the proposed procedure. Since parameter tuning is crucial to the performance of the GSELO procedure, we also propose an extended Bayesian information criteria (EBIC) parameter selector for the GSELO procedure. Simulated and real data studies have demonstrated the prediction performance and effectiveness of the proposed method over several state‐of‐the‐art methods.

Funder

Fundamental Research Funds for Central Universities of the Central South University

Hunan Provincial Philosophy and Social Science Foundation, China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3