Optimization of hydraulic parameters for pipeline system of hydropower station with super long headrace tunnel based on mayfly algorithm considering operational scenarios

Author:

Wang Le1,Guo Wencheng1ORCID

Affiliation:

1. School of Civil and Hydraulic Engineering Huazhong University of Science and Technology Wuhan China

Abstract

AbstractThis paper studies the optimization of hydraulic parameters for pipeline system of hydropower station with super long headrace tunnel (HSSLHT) based on mayfly algorithm considering operational scenarios. Firstly, the state equation of HSSLHT under load disturbance is derived. The optimization design of hydraulic parameters for pipeline system based on mayfly algorithm is proposed. Then, the optimization of hydraulic parameters is conducted and analyzed. Finally, the effects of pipeline diameters and transfer coefficients of turbines on the optimization of hydraulic parameters for pipeline systems are revealed. The results show that the optimization of hydraulic parameters for pipeline system is a multiobjective problem, and the several objective functions exhibit significant conflicts. Compared to the firefly algorithm and genetic algorithm, the objective function under mayfly algorithm is improved by 14.7% and 5.1%, respectively. The mayfly algorithm can make the hydraulic parameters for the pipeline system reach the Pareto optimal solution under both load decrease condition and load increase condition. The diameter of penstock has an obvious influence on the robustness of dynamic performance of HSSLHT. When the diameter of penstock increases by 30%, the robustness of HSSLHT becomes worse and the robustness index deteriorates by 57%. The reason is that the flow inertia of penstock becomes smaller with the increase of diameter, and the flow inertia of penstock is favorable for resisting disturbance of HSSLHT. The coefficient of throttled orifice head loss and the lengths and head losses of headrace tunnel and penstock are the key hydraulic parameters for matching the operation of HSSLHT.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3