Robust T2 estimation with balanced steady state free precession

Author:

Bieri Oliver12ORCID,Weidensteiner Claudia12,Ganter Carl3ORCID

Affiliation:

1. Department of Biomedical Engineering University of Basel Allschwil Switzerland

2. Department of Radiology, Division of Radiological Physics University Hospital Basel Basel Switzerland

3. Department of Radiology, Klinikum rechts der Isar Technical University Munich Munich Germany

Abstract

AbstractPurposeTo develop a novel signal representation for balanced steady state free precession (bSSFP) displaying its T2 independence on B1 and on magnetization transfer (MT) effects.MethodsA signal model for bSSFP is developed that shows only an explicit dependence (up to a scaling factor) on E2 (and, therefore, T2) and a novel parameter c (with implicit dependence on the flip angle and E1). Moreover, it is shown that MT effects, entering the bSSFP signal via a binary spin bath model, can be captured by a redefinition of T1 and, therefore, leading to modification of E1, resulting in the same signal model. Various sets of phase‐cycled bSSFP brain scans (different flip angles, different TR, different RF pulse durations, and different number of phase cycles) were recorded at 3 T. The parameters T2 (E2) and c were estimated using a variable projection (VARPRO) method and Monte‐Carlo simulations were performed to assess T2 estimation precision.ResultsInitial experiments confirmed the expected independence of T2 on various protocol settings, such as TR, the flip angle, B1 field inhomogeneity, and the RF pulse duration. Any variation (within the explored range) appears to directly affect the estimation of the parameter c only—in agreement with theory.ConclusionBSSFP theory predicts an extraordinary feature that all MT and B1‐related variational aspects do not enter T2 estimation, making it a potentially robust methodology for T2 quantification, pending validation against existing standards.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3