Bayesian optimization of hyperparameters from noisy marginal likelihood estimates

Author:

Gustafsson Oskar1,Villani Mattias12,Stockhammar Pär13

Affiliation:

1. Department of Statistics Stockholm University Stockholm Sweden

2. Department of Computer and Information Science Linköping University Linköping Sweden

3. Sveriges Riksbank Stockholm Sweden

Abstract

SummaryBayesian models often involve a small set of hyperparameters determined by maximizing the marginal likelihood. Bayesian optimization is an iterative method where a Gaussian process posterior of the underlying function is sequentially updated by new function evaluations. We propose a novel Bayesian optimization framework for situations where the user controls the computational effort and therefore the precision of the function evaluations. This is a common situation in econometrics where the marginal likelihood is often computed by Markov chain Monte Carlo or importance sampling methods. The new acquisition strategy gives the optimizer the option to explore the function with cheap noisy evaluations and therefore find the optimum faster. The method is applied to estimating the prior hyperparameters in two popular models on US macroeconomic time series data: the steady‐state Bayesian vector autoregressive (BVAR) and the time‐varying parameter BVAR with stochastic volatility.

Publisher

Wiley

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Reference27 articles.

1. Bayesian Analysis of DSGE Models—Some Comments

2. Bayesian Analysis of DSGE Models

3. Large Bayesian vector auto regressions

4. Julia: A Fresh Approach to Numerical Computing

5. Brochu E. Cora V. M. &De Freitas N.(2010).A tutorial on Bayesian optimization of expensive cost functions with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:10122599.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local prediction pools;Journal of Forecasting;2023-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3