Self‐adaption and texture generation: A hybrid loss function for low‐dose CT denoising

Author:

Wang Zhenchuan12,Liu Minghui13,Cheng Xuan13,Zhu Jinqi4,Wang Xiaomin13,Gong Haigang13,Liu Ming23,Xu Lifeng2

Affiliation:

1. Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China Quzhou China

2. The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital Quzhou China

3. University of Electronic Science and Technology of China Chengdu China

4. Tianjin Normal University Tianjin China

Abstract

AbstractBackgroundDeep learning has been successfully applied to low‐dose CT (LDCT) denoising. But the training of the model is very dependent on an appropriate loss function. Existing denoising models often use per‐pixel loss, including mean abs error (MAE) and mean square error (MSE). This ignores the difference in denoising difficulty between different regions of the CT images and leads to the loss of large texture information in the generated image.PurposeIn this paper, we propose a new hybrid loss function that adapts to the noise in different regions of CT images to balance the denoising difficulty and preserve texture details, thus acquiring CT images with high‐quality diagnostic value using LDCT images, providing strong support for condition diagnosis.MethodsWe propose a hybrid loss function consisting of weighted patch loss (WPLoss) and high‐frequency information loss (HFLoss). To enhance the model's denoising ability of the local areas which are difficult to denoise, we improve the MAE to obtain WPLoss. After the generated image and the target image are divided into several patches, the loss weight of each patch is adaptively and dynamically adjusted according to its loss ratio. In addition, considering that texture details are contained in the high‐frequency information of the image, we use HFLoss to calculate the difference between CT images in the high‐frequency information part.ResultsOur hybrid loss function improves the denoising performance of several models in the experiment, and obtains a higher peak signal‐to‐noise ratio (PSNR) and structural similarity index (SSIM). Moreover, through visual inspection of the generated results of the comparison experiment, the proposed hybrid function can effectively suppress noise and retain image details.ConclusionsWe propose a hybrid loss function for LDCT image denoising, which has good interpretation properties and can improve the denoising performance of existing models. And the validation results of multiple models using different datasets show that it has good generalization ability. By using this loss function, high‐quality CT images with low radiation are achieved, which can avoid the hazards caused by radiation and ensure the disease diagnosis for patients.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3