Dosimetric impact of MLC positional errors on dose distribution in IMRT

Author:

Enomoto Hiromi12ORCID,Fujita Yukio2,Matsumoto Saki1,Nakajima Yujiro2,Nagai Miyuki3,Tonari Ayako34,Ebara Takeshi3

Affiliation:

1. Department of Radiology Kyorin University Hospital Mitaka Tokyo Japan

2. Department of Radiological Sciences Komazawa University Setagaya Tokyo Japan

3. Department of Radiation Oncology Kyorin University Mitaka Tokyo Japan

4. Department of Medical Radiological Technology Faculty of Health Sciences Kyorin University Mitaka Tokyo Japan

Abstract

AbstractOptimizing the positional accuracy of multileaf collimators (MLC) for radiotherapy is important for dose accuracy and for reducing doses delivered to normal tissues. This study investigates dose sensitivity variations and complexity metrics of MLC positional error in volumetric modulated arc therapy and determines the acceptable ranges of MLC positional accuracy in several clinical situations. Treatment plans were generated for four treatment sites (prostate cancer, lung cancer, spinal, and brain metastases) using different treatment planning systems (TPSs) and fraction sizes. Each treatment plan introduced 0.25–2.0 mm systematic or random MLC leaf bank errors. The generalized equivalent uniform dose (gEUD) sensitivity and complexity metrics (MU/Gy and plan irregularity) were calculated, and the correlation coefficients were assessed. Furthermore, the required tolerances for MLC positional accuracy control were calculated. The gEUD sensitivity showed the highest dependence of systematic positional error on the treatment site, followed by TPS and fraction size. The gEUD sensitivities were 6.7, 4.5, 2.5, and 1.7%/mm for Monaco and 8.9, 6.2, 3.4, and 2.3%/mm (spinal metastasis, lung cancer, prostate cancer, and brain metastasis, respectively) for RayStation. The gEUD sensitivity was strongly correlated with the complexity metrics (r = 0.88–0.93). The minimum allowable positional error for MLC was 0.63, 0.34, 1.02, and 0.28 mm (prostate, lung, brain, and spinal metastasis, respectively). The acceptable range of MLC positional accuracy depends on the treatment site, and an appropriate tolerance should be set for each treatment site with reference to the complexity metric. It is expected to enable easier and more detailed MLC positional accuracy control than before by reducing dose errors to patients at the treatment planning stage and by controlling MLC quality based on complexity metrics, such as MU/Gy.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3