Frontal polymerization for UV‐ and thermally initiated EPON 826 resin

Author:

Esposito Gabrielle12ORCID,Tandon Gyaneshwar12,Abbott Andrew12,Butcher Dennis1,Koerner Hilmar1ORCID

Affiliation:

1. AFRL/RXNP Wright‐Patterson Air Force Base Ohio USA

2. University of Dayton Research Institute Dayton Ohio USA

Abstract

AbstractFrontal polymerization has great potential in complementing additive manufacturing processes such as direct ink writing as a continuous cure synchronized to the printing speed can overcome issues such as sagging. To study the incorporation of frontal polymerization into a potential printing process, a frontally polymerizable DGEBA epoxy resin has been developed for both UV and thermal initiation. Through frontal polymerization alone, full conversion is observed with a starting glass transition of 150°C for both initiation methods. Resulting thermal behavior is shown to have little dependence on either initiation irradiance or temperature utilized and much greater dependence on initiator concentration in the resin. Mechanical behavior is maximized by varying initiator concentration and cure conditions achieving tensile stress of 75 MPa and K1C of 1.2 MPa‐m1/2. Shelf stability of the resin proves promising with no viscosity change after 12 weeks of room temperature storage. Future studies will concern adapting the resin for both direct ink writing and continuous fiber additive manufacturing applications.Highlights Frontal polymerization of EPON 826 using RICFP Utilized a tetrakis borate containing diaryliodonium cationic initiator Stable and polymerizable after 12 weeks Resin printed and frontally cured using UV initiation

Funder

Air Force Research Laboratory

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3