The ecological consequences of the timing of extreme climate events

Author:

Cinto Mejía Elizeth1ORCID,Wetzel William C.12ORCID

Affiliation:

1. Department of Entomology and Ecology, Evolution, and Behavior Program Michigan State University East Lansing Michigan USA

2. Department of Integrative Biology and AgBioResearch Michigan State University East Lansing Michigan USA

Abstract

AbstractClimate change is increasing the intensity, duration, and frequency of extreme climate events (ECEs). These ECEs can have major ecological consequences, e.g., changing nutrient flows, causing extirpation, and altering organismal development. Many ECEs are discrete events that occur at distinctive times during the biological processes they impact. Because of this, ECEs are likely to have differing ecological impacts depending on when they happen, yet we lack on studies that explore how the ecological consequences of ECEs vary with when they occur. Drawing upon evidence from physiological, population, and community ecology, and previous work on ecological disturbances, we suggest that the consequences of ECEs will be sensitive to when they occur. We illustrate the importance of timing by showing how the effects of an ECE could vary depending on when it occurs through the course of (1) organismal ontogeny, (2) population dynamics, and (3) community assembly. An enhanced focus on the timing of extreme weather in climate change research will reveal how and when ECEs are altering ecosystems, possible mechanisms behind these impacts, and what ecosystems or species are most vulnerable to ECEs, helping us to make more informed predictions about the ecological consequences of climate change.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Reference56 articles.

1. Consequences of widespread tree mortality triggered by drought and temperature stress

2. Modelling hunting strategies for the conservation of wild rabbit populations

3. Efecto de remoción y relocalización de Lepanthes eltoroensis Stimson, después de un huracán;Benítez Joubert R. J.;Lankesteriana: International Journal on Orchidology,2003

4. Genomic Evidence of Rapid and Stable Adaptive Oscillations over Seasonal Time Scales in Drosophila

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3