What online review features really matter? An explainable deep learning approach for hotel demand forecasting

Author:

Zhang Dong1ORCID,Wu Chong2

Affiliation:

1. School of Business Administration South China University of Technology Guangzhou China

2. School of Economics and Management Harbin Institute of Technology Harbin China

Abstract

AbstractAccurate demand forecasting plays a critical role in hotel revenue management. Online reviews have emerged as a viable information source for hotel demand forecasting. However, existing hotel demand forecasting studies leverage only sentiment information from online reviews, leading to capturing insufficient information. Furthermore, prevailing hotel demand forecasting methods either lack explainability or fail to capture local correlations within sequences. In this study, we (1) propose a comprehensive framework consisting of four components: expertise, sentiment, popularity, and novelty (ESPN framework), to investigate the impact of online reviews on hotel demand forecasting; (2) propose a novel dual attention‐based long short‐term memory convolutional neural network (DA‐LSTM‐CNN) model to optimize the model effectiveness. We collected online review data from Ctrip.com to evaluate our proposed ESPN framework and DA‐LSTM‐CNN model. The empirical results show that incorporating features derived from the ESPN improves forecasting accuracy and our DA‐LSTM‐CNN significantly outperforms the state‐of‐the‐art models. Further, we use a case study to illustrate the explainability of the DA‐LSTM‐CNN, which could guide future setups for hotel demand forecasting systems. We discuss how stakeholders can benefit from our proposed ESPN framework and DA‐LSTM‐CNN model.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Library and Information Sciences,Information Systems and Management,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3